PERSONAL COMPUTER WORLD

MAY 1979

Before You Begin

Until comparatively recently one
_essential prerequisite for any budding
less programmer was the odd
<million or so needed to pick up a
suitable mainframe. Nowadays it is
possible for any home computer
enthusiast to write his/her own
program for a microprocessor based
system costing less than £1,000.

Indeed, so many personal computer
users are becoming interested in this
. field that I thought it worthwhile
to pen a few pages of advice and
waming so that PCW readers can be
steered along the right track. The
potential of micro-programs can be
judged from the fact that at the 9th
ACM chess championships, held in

ashington last December, two such
programs performed very creditably
“ongside many of the world’s
otrongest mainframe programs: SAR-
GON (written by Kathy and Dan

racklen) scored 2% out of 4 and

David Levy

MIKE (Mike Johnson) scored 1%.
(Also see my article in November 78
PCW).

Chess is an extremely complex
game to play yet its rules are clearly
defined, and the way that the pieces
move can be learned within a few
minutes. Despite this, many pro-
grammers do not take the trouble to
program all the rules propery. En
passanl captures and some of the
rules pertaining to castling are often
overlooked, even in commercially
available chess machines costing up
to £200. There is no excuse for such
sloppy programming and I would
therefore suggest that before you
write so much as one instruction of
code, do make sure that you know
all the moves of chess and the
circumstances under which the special
moves can be made. This information

Chess Challenger

is readily available in some elementary
textbooks on the game but it would
do no harm to consult the official
rules of chess, published by Pitman

" in Britain and by David McKay in

the USA.

Once you are confident that you
know the moves and their rules, it is
time to leam something about the
game itself. If you are an inexper-
ienced player you could do with
some help, so try to get some hints
on the basic principles of the game
from a player who knows his onions.
You can learn a certain amount from
books but a few evenings at the local
chess club will pay greater dividends
and besides, the club can always do
with vour membership fee. Remem-
ber, if you do not possess some
understanding of the problem (i.e.
what chess is about) you will never
be able to solve it (i.e. write a strong

program).

There exists a wealth of literature on
the subject, mostly papers in learned
journals and in books on artificial
intelligence. Before you rush off
and invent the wheel again it will be
worthwhile to study some of the
more important items in the liter-
ature. As an opfional introductory
paper, and certainly one of great
historic interest, I suggest Claude
Shannon’s “Programming a Computer
for Playing Chess”, Philosophical
Magazine volume - 41 (7th series),
pp. 256-275.

Certainly more readily available
are three useful books on the subject.
“Chess and Computers” by David
Levy, published in Britain by Batsford
and in the USA by Computer Science
Press, is an elementary introduction
to the subject. “Chess Skill in Man

25

PERSONAL COMPUTLER WORLD

and Machine”, edited by Peter Frey
(Springer Verlag) is an ouistanding
work at a more advanced level.
“Computer Chess” by Monroe New-
born (Academic Press) lies somewhere
between the two. The first two tifles
contain extensive bibliographies.-

in Programming?

This is not an appropriate place to
describe in detail how chess programs
work. Suffice it to say that the three
key items in all chess programs are:
(i) A move generaltor which lists the

. legal moves from any position and

which can generate a tree structure
representing the possible variations in
play.

(ii) A position evaluator which asses-
ses the merit of positions in the tree.
(iii) A tree searching mechanism
which determines optimal play for
both sides and thereby selects the
move which tfhe program makes.

Since the tree of possibilities in
chess is enormous it is necessary to
use various “tricks” to speed up the
search process. By far the most
powerful trick is a device known as
the alpha-beta algorithm which can
plough through a tree with N terminal
nodes (or positions), and select a
move after evaluafing something of
the order of 6 x.'rﬂrpositions (opti-
mally 2 xJN but optimality in chess is
a pipe-dream). Since the tree is
enormous, so is the saving achieved
by employing the alpha-beta algor-
ithm.

This algorithm is described in many
parts of the literature but possibly
the best description, which comes
complete with an Algollike version
of the algorithm, is that found in an
article by Knuth and Moore, “An
analysis of alpha-beta pruning”, in
“Artificial Intelligence”, volume 6
(1975), pp. 293-326. Do not worry
about overflowing memory during
the tree search. The alpha-beta
algorithm needs only to retain one
node at each level of the tree.

The Videomaster Chess Champion

26

Of crucial importance in free
searching is your choice of the
quiescence criteria. Prune off too
few moves and the combinatorial
effects on the growth of the tree will
cause vour program to think forever
over its moves. Prune off too many
and it will overdook some important
tactical possibilities. Most programs
perform an exhaustive search o some
fixed depth then a selective search
along tactical paths, but why not
try to grow intelligent trees, just as
strong human players do?

Your position evaluator may be
as primitive or sophisticated
as desired, but remember that there
is a trade oif between sophisticated
evaluation (which takes a lot of time)
and the reduction in the size of the
tree that can be examined (because
of the time taken to evaluate each
node). It has yet to be determined
whether sophisticated evaluation and
a small tree search is better than a
primitive evaluation function and a
larger search. You should experiment
before making your final decision —
begin with an evaluation function
containing only one or two terms
(material and mobility are the most
important) and build it up from there
until you are satisfied with the results.
Remember, your position evaluator
is the most frequently used part of
the program so it must execufe
quickly.

One useful device in the evaluation
mechanism is what Donald Michie
calls “swap-off”. This is described
incorrectly on pages 45-47 of “Chess
and Computers”, the errors having
been copied over from Michie’s
original article on the subject which
was published in 1966. I am indebted
to Helmut Richter of Hamburg for
the following, more accurate, des-
cription. :

The swapoff value of a square is the
material gain that can be expected if

MAY 1979

the side on the move makes the most
of a capturing or exchanging sequence
on that square. The purpose of using
swapofl values is to decide whether
or not a particular capture is worth-
while without the necessity for
lookahead. It can also determine the
safety of a square.

The basis for calculating swapoff
values is that the side on the move
should either make no capture on a
particular square or should capture
with his least valuable unit so that
any recapture by his opponent will
have minimal value.

Swapoff values are calculated in
the following way. Assume that a
black piece of value Vg is defended

" by n black pieces of values vq, VYo,

... ¥, in ascending order of value,
and attacked by N white pieces of
values Uq, Uy .. Uy in ascending
order of value. -

{w = white; b = black)
wy =Vq

Wo=Vg Uq 4+ Vg
Wg =V Uq $ Vg Uy 4V,

Wy =Vq Uq +Vq Uy +Vy Un + Vo e,
and

b1 =vg U,
b2=\r'c'-u|1 +Vq Uy

Lo Yo s 8y iy i Bty s

bg =Yg Uq +VYq Up+Vy Ug 4+ V3 Uy erc.

These iwo series are calculated
until one side or the other runs out
of pieces with which to capture on
the square occupied by Vq.

‘Let us assume that:

w, =2 b, =0
wo=4 by=10
wa=.12 bg=10
Wy =.10 (Pg=13)... whichis

ignored, since the last player to ca

ture does not lose the capturing piece.
These are placed in a one-dimen-

sional array: 2, 0,-4,10,-12, 10, -10.

(Values of white and black alternately)

There are two reasons forstopping
the sequence, One side may not cap-
ture when it is possible to do so; or
both sides capture until no more
captures are possible, White may
stop after the even indexed elements
of the array (after Black has captured)
and Black can stop after the odd-
indexed elements. In order not to
treat the last value as a special case
a zero is added to the array and itis
repeated, so both sides have the same
last value: 2,0,-4,10,-12,10,-10, 0.0
el -

White is trying to reach the maxi-
mum of the even-indexed elements
and Black the minimum of the odd
ones in array (1).

PERSONAL COMPUTLR WORLD

BORIS — Chess Computer from
Optimisation

Max (0, 10, 10,0) = 10
Min (2,-4,-12,-10,0) = -12

index =6
index =5

~‘index is the position of max or min
ement in array (1)),

Black cannot continue after -12,
Therefore the sequence after -12
must be pruned off, leaving the new
array:
2,0,-4,10,-12,12
(this last value is a copy)

White now tries to find a new
maximum and Black tries o find a
new minimum. The process is repeated
until White’s maximum = Black's
minimum. Here:

index =4
index =5

Max (0, 10,-12) =10
Min (2,-4,-12) =-12

_New array is 2, 0, -4, 10, 10 (copied)

Therefore white neither profits
nor loses by making a capture on
that square.

Swapoff values can be used to
determine whether or not it is safe
to move a piece to a pariicular
(vacant) square. Simply make the
first element of the array 0 (and
remember that the piece which moves
to this square no longer attacks it).

The purpose of using swap-off is
to look out (without looking ahead!)
for possibilities of gaining material
by successively capturing on a
particular square. The method used
does not take into account pins, but
I feel that it is still an exiremely
useful fool. A chess program which
detected all elementary exchanging
and capturing situations would al-

ready be a stronger player than 50%

of the world’s chess playing popul-
ation,

Move generation should be care-
fully thought out. When 64-bit
processors are readily available, move
generation and position evaluation
will become easier to code and quicker
to execute (thank God chess is not

played on a 9 x 9 board). Speed in.

move generation is almost as crucial
as speed in position evaluation so any
time that you invest in optimising
these roufines will be usefully spent.

Chess is conventionally divided into
the opening, the middle-game and
the endgame. In the opening both
sides seek to develop their pieces on
sensible squares. A vast amount has
been written about the openings
but programmers should be wary of
storing dozens or hundreds of opening
moves as they will be useless against
an opponent who chooses to follow
a different variation. It is far better
to teach your program some basic
principles of opening play, such as
encouraging it to develop its pieces
and to castle.

The middle-game is usually witness
to most of the cut and thrust fighting

MAY 1979

that goes on on the chess board. A
good tactical analyzer is very useful
here, so iry to grow your irees in an
intelligent way so that most CPU
time is spent in looking at the critical
variations. Use obvious heurstics to
cut down the growth of vour tree;
for example, do not spend much time
looking at moves that allow the
opponent an immediate gain of
material.

The endgame has always been and
will always be the hardest part of
chess to program. It is the part of
the game that best sorts out the
masters from the lesser mortals. Read
the final two pages of Reuben Fine’s
“Basic Chess Endings” (Bell and
Hyman) and try to implement some
of his rules. In particular, your
program should know about advanc-
ing passed pawns — an extra queen
never did anvbody any harm.

Since you are obviously interested
in computer chess you should join
the International Computer Chess
Association. This organization pub-
lishes a news bulletin a few times each
year and it will help you to keep up
with latest trends. To join ICCA send
$5 (US) to: Professor B. Mittman,
Vogelback Computer Center, 2129
Sheridan Road, Evanston, I1, USA
60201.

Good luck in your programming,
and if vou write the first program
that wins a match against me you
will collect the $5,000 Levy/OMNI
prize.

P.S. I regret that pressure of work
prevents me from dealing with
correspondence on this subject.

PCW David Levy /s setting up a
company to develop intelligent soft-
ware for sophisticated microprocessor
applications. Any readers interested
in writing assembler programs on a
contract basis please write to David
Levy, Box 123, Personal Computer
World, 62a Westbourne Grove, Lon-
don W2.

Anyone actively interested in
speech recognition, music composi-
tion or robotics is also invited o
apply. PCW

Tax {0, 10) =10 index = 4
Sin (2,-4,10)=-4 index =3
- ‘ew array is 2, 0, -4, -4 (copied)

Max (0,-41=0 index = 2
_Min (2,-4)=-4 index = 3

.ew array is 2, 0, 0 (copied)

Max (0) =0

Min (2,01= 0. Finally we have:
Maximum = Minimum = value of
exchanging sequence = 0.

= B 2)

11|

il SRR SaIwlAreTw E O U uNd

The Bit Pad computer digitizer converts graphic
information inta digital form for direct entry into a
computer By touching a pen like stylus or a
cursor, 1o any position on a drawing, diagram,
photograph, or other graphic presentation, the
position co-ordinates are converted to digital
equivalents.

cabinet.

Terminal Disgiay Systems Lt Rillgide. Whieburk tndustnal Estace Blackdurn

Blactburs B! 55M_Lancs England
I Name _
| Address .. .

L.

® Bit Pad costs only £450 (excluding VAT).
Fill in the coupon and we will send you full
information and details.

@ Bit Pad interfaces with almost any micro
computer,

@ Bit Pad consists of a 15" sq. digitizer tablet
(11" sq. active area), a stylus, and a controller

BB155M Lancs England

Cartographic Archeclogical’
Orthodontics Design Gepln,
Radiclogy Microscopy Artw 22
Structural Crvil Mg
Process Contral Gr
Teaching Game:
Measuring B.clog, kg
Menus Marcet researcji
Archeclogica: &
Design Geolog,

ark Archsteciure
n:cal Electrical
Exam mar<ing
onal research
ment Military
Geograpghical
Town Planming
el stcs Traftic

Measunng
Menus Market re

27

