Exotica such as the king ripple
and the pawn-advance routine
are two of the techniques John
White has incorporated into his
entertaining chess program in
Basic, End-Game.

END-GAME has been written in Basic to
~~~mplement the draughts program J-Checkers,
ablished in the October issue of Your

Computer. It exemplifies the method of move |

assessment known as iterative deepening.

I have chosen the end-game of chess as a
model because it limits the number of pieces
used and because the concept of mobility —
essential in full games of chess — can, at a
pinch, be ignored to keep the time taken for
the game within manageable limits. I have

eschewed fancy time- or memory-saving tricks |

for clariry.

Having tested this program, I have sausfied
myself that it is not possible to write a
satisfactory program for playing a chess end-
game using a look-ahead of only two-ply. I
hope this information will be of use to those
contemplating writing their own chess
programs.

End-Game does, however, play a frac-
tionally more sensible chess end-game than
many of the weaker chess computers available

commercially, bearing in mind the fact thar a |

compiled version would run in abour rwo
seconds. The interpreted Basic version
presented here requires an average of two
minutes a move.

30 YOUR COMPUTER, DECEMBER 1381

The end-game of chess is hard for a human
to play well, but very difficult indeed for a
chess computer. A human can easily see at a
glance what will happen six 10 seven moves
ahead for both sides — grandmasters can see
much, much more,

A chess computer will normally only analyse
two or three moves ahead — four- to six-ply —
although one or two of the most modern
machines switch in extra routines for the end-

game when sufficientdy little material remains |

on the board. Under these circumstances up to
five moves ahead —
evaluared. Even so, the play is sull weak by
human standards. The classic problem is that
shown in figure 1.

It is possible for a human 1o see at once that

black’s only sensible move is K-B6 — or B8 or |
B7. Anything else loses the pawn to white’s |

attacking king. I shall avoid the problem of
whether black can win even if he does save the
pawn. Yet very few chess computers can see
this solution, and most play pawn endings
very badly, moving pieces almost at random.
Since the necessary deep search to play a
good end-game is very time-consuming, I have
tried in End-Game to produce an evaluation
function which will play a recognisable end-
game superior to that of most chess computers

but using only a two-ply search. Essentially I |

have relied on the well-known maxim of
“Push a passed pawn™.

End-Game is written in Basic which
imposes its own stunning restriction on what
can be placed in the program: interpreted
Basic runs some 200 times more slowly than

10-ply — may be |

the machine code used in chess computers and
a complete game of chess is our of the
question. Restricting the pieces to pawns and
king only gives a respectable game with a clear
objective: advancement of a pawn to the eighth
rank.

The first player to do this has essentially
won at chess, and has won End-Game out-
right. It may be noted that the powerful
Sargon 2.5 and Morphy chess programs also
adopt this policy in their end-game play, and
will make any sacrifice to delay the arrival of
an enemy pawn on the eighth rank.

End-Game uses a single subroutine to
evaluate the position arising after each move —
instead of evaluating the merit of ezch move
itself, a straregy employed in other published
games. The moves of each piece are generated
by the program which assigns a score to the
position arising from each move ar the first
level of search — one-ply.

The moves are then sorted, using a fast-sort
routine which arranges the score in order of
decreasing merit. The moves creating the
scores are also rearranged, of course.

The program now calls itself — an example
of recursion in Basic — to generate the

Figure 1. The classic chess problem.

responses 1o its sorted moves. It assumes that
the opponent will be trying to maximise his
score, and thus minimise the machine’s score.
So the best — lowest-scoring — opponent
move is stored in location.

This is combined with the first-ply score
and compared with the highest total yet found
for a program move, which is stored in
location R(0). R(0) is continually updated as
better moves are found for the machine —
moves for which the opponent can find only
weak responses.

An important feature of this search is the co-
called “alpha-beta pruning”. If any opponent
response makes the machine’s move under
consideration worse than a previous stored
machine’s move, then there is no need for the
machine to consider any further responses by
the opponent to the machine move under
consideration. The flag “AB” is set to 1,
which stops any further searching of that
MmOove.

Alpha-beta pruning can save a good deal of
unnecessary searching and thus a great deal of
nme. It is widely used in chess computers
today. To be most effective, it is best to

| consider the most-likely-best machine move

first, and also the most-likely-best opponent
response.



The most-likely-best machine move has
been derived by the sort which we considered
earlier. The most-likely-best opponent move is
hard to determine without going through
them all — which, of course, defeats the whole
point of alpha-beta searching.

I have instead adopted what I believe to be a
novel heuristic: the best response found for
the opponent for the previous machine move
is evaluated first for the next machine move.
This has proved to be quite effective at saving
time in End-Game.

The nen effect of alpha-beta pruning on
End-Game is quite spectacular in reducing
response time. Anyone who doubts this should
try deleting line 800.

The whole process I have described — move
generation, sorting, counter-move generation,
alpha-beta pruning — is known as iterative
deepening. It will be zppreciated that the best
move so far found is always available, and
machines using this technique generally
display this best-move-yet — a feature which I
have emulated in End-Game.

Many chess computers employ an adjustable

mer which will interrupt the machine and
display the best-move-yer as its move —
examples include the Super System III —
while others carry the process to its logical
conclusion — examples are Sargon 2.5 and
End-Game. '

Because of the time restrictions imposed by
interpreted Basic, End-Game evaluates the
material and strategic position for both sides
just once. Captures and certain other strong
moves are evaluated for material gains at a
further two levels.

The form of End-Game has been dictated by
attempts to increase the speed. Constant
calling of subroutines looks very pretty, but
tends to slow execution time, while writing the
same thing out several times is faster, but uses
far more memory. 1 have stacked the most
commonly-used subroutines at the head of the
program to speed up their location when
called.

The greatest retardation of any Basic

_program is caused by the dreaded If statement.

"hen this occurs in a loop, the loss of time
accelerates rapidly. The evaluation function is
called after every potential move, yet If
statements are essential in it if' it is to serve any
useful purpose. I have moved some of the
evaluation features from the main evaluation
subroutine to reduce the number of times they
are called.

It is interesting to see how careful selection
of moves can reduce total thinking time for the
machine. Lines 130-170 are called every time a
pawn move is considerd and should, one
might think, slow the program compared with
the speed of execution without these lines
which test to see if advancing a pawn enables
the opponent to snap it up immediately.

After all, the second level of search will find
that the pawn can be captured by a strong
opponent move, so why put it in? In fact, End-
Game likes to advance pawns and so, by
deterring an advance into the jaws of an
opponent, a more sensible first move is put at
the top of the list after the sort.

Thereafter, alpha-beta pruning does its work
and the weak pawn advance is barely con-
sidered instead of being fully evaluated as the

Variables defined in program lines 1110-1120:

CC=0.012 CE=0.1 CF=0.2CG=0.3CH=10

CJ=30CK=15CL=50 CM=10CQ=2CD=1

| C2=3

Material count: pawn=CD king=CZ

Pawn moves:

Do not approach enemy king —CG

Do not approach enemy pawn —CG

Stay off edge of board —1/CH

Advance to rank Y +Y*xCC

Avoid having Y pawns on one

file —Y—11xYxCF

Pawn advance: no oppasition in first channel
+CG

toeighth rank +0.5

score for first channel Material count/CH

score for second channel Material count/CM

Enpassantthreat —0.8

King moves:

King opposition +CE

King environment + 1/CK, + 3/CK

Avoid capture by pawn -5

Do not stray from centres

squares +1/CJ

King ripple Material

count/{CQx CL)

Table 1. Evaluation table for End-Game.

first move on the list. This saves a great deal of
time. Thus the nett effect of the time-
consuming lines 130-170 is actually to
accelerate the program.

The evaluation features are listed in table 1.
The variables which store the scores for
different fearures, shown in table 1, are all
found in lines 1110 and 1120, and so can be
altered if you feel like experimenting.

Two features which I believe to be original
are the pawn-advance routine — subroutine
510 — and the king ripple — lines 2260-2290,
Both are stored outside the main evaluation
subroutine.

The pawn-advance examines a three-square-
wide channel ahead of the pawn after it has
moved, all the way to the eighth rank. The
move is scored according to whether the
channel is obstructed — enemy piece in front,
king scores high — or assisted — friendly piece
in front, king scores high. The same channel is
then examined again for its entire length, and
again scored.

The second score shows whether the
advancing pawn has numerical supremacy
over the opposition: that is, one of two pawns
will be encouraged to advance if the path is
blocked by only cne enemy pawn.

Obviously, this is a very crude evaluation
feature, but it works relatively well for End-

Game while minimising the number of If
statements required.

The king ripple is a very low-scoring feature
put in solely to prevent the king wandering
aimlessly when most of the other material has
been removed from the board. All the squares at
a distance of two squares from the king, then
three, then four and o0 on, are examined until
another piece of either side has been found. The
king then heads towards this piece.

King ripple is time-consuming and is
evaluated only for the computer's pieces.
Ceupled with the routine which weakly dis-
courages the king from wandering outside the
central 16 squares, it should prevent the king
from becoming “lost™ for too long.

King environment searches each square
within one move of the king, and scores
favourably — +3/15 — for each enemy pawn so
located and less favourably — +1/15 — for each
friendly pawn. Obviously, the two kings cannot
approach each other.

QOther evaluation features include low scoring
for pawns on either edge of the board, avoidance
of doubled pawns — trebled or quadrupled
pawns are punished exponentially — an
exponentially-increasing score as a pawn
advances to the eighth rank and encouragement
for one king holding the opposition over the
other.

I have remembered End-Game's chess
origins by not insisting that the machine
advance a pawn 1o the eighth rank if 2 good
move, such as a caprure, exists elsewhere on the
board.

En passame has been catered for by a
somewhat elementary methdod. If the human
makes a move which enables the machine to
capture en passan, the capture is given priority
and properly evaluated. However, the machine
does not allow for en passant when otherwise
evaluating moves: instead, the possibility of en
passani is assigned a score of “undesirable”
without evaluaring in depth.

End-Game was written in standard Microsoft
Basic with no Peeks or Pokes. The use of cursor
commands, including screen clear and home
greatly improves display.

Lines 1310 and 1770 operate a timer routine
for my Sharp MZ-80K and can be adapted or
ignored. Many computers do not like jumping
from loops, which has influenced some of my
program lines. Other Sharp users will require
one of the Basic Extensions for the logical

{continued on next page)

A B
Pawn advance. A shows
first channel, B second

channel.

be
Y -E
&
A B C
King environment. The muost favoured

position for the king is C, less favourable is
B and least favourable is A.

Pawn advance. The most
fikely move for black wili
F, F,6

A starting position for
games pre-stored in
End-Game.

King ripple.

YOUR COMPUTER, DECEMBER 1881 31



{continued from previous page)

operators And and Or in some lines and the
string inequalities in others.

Line 500 returns a value of —1 for each
bracketed statement which is true, and 0 if
false. This line runs some 20 percent faster than
the corresponding If statements would.

Sadly, the program runs to 9.5K as it stands.
This can be trimmed o 8K by removing the fast
sort — this will slow it somewhat — by
removing the screen-display lines, and by
removing all but two of the data statements,
together with the lines which select the data
statements.

Program Function Line

Evaluation 240-400
King environment 410-500
Pawn advance 510-629
Move storage 630-670
Third-level captures 680-810

Fourth-level captures 820-920

Data statements 930-1040
Variables defined for evaluation 1110-1120
Set-up position 1130-1280
First ply 1290-1540
Second ply 1550-1780
Move display 1770-1820
Input moves 1830-2080
King-move generator 2080-2310
Pawn one-move generator 2320-2350
Pawn two-move generator 2360-2450
Pawn capture 2460-2550
Fast sort 2580-2830
Alpha-numeric conversion 2840-2870
Screen display 2880-3010

End-Game has six different games prestored
in 12 Dara statements — the starting positions
are shown in the diagrams. These can be
selected, or the program will choose randomly
between them. A display of the board is given —
copy it on to your chess board. To set up your

own position, it will be necessary to alter two
Data statements.
The machine will prompt
YOUR MOVE
when read, followed by
FROM?

It will now accept ordinary alpha-numeric
entries, such as :

{(FROMID,2(TO) D,4

Alternatively, typing P,1 will give adisplay of
the board which is displayed only if you ask for
it. Typing Q,1 will reveal what the machine
thinks your move should be and typing Y, 1 will
cause the machine to act on its own suggestion
for your move without need to enter it.

The only error check run by the machine on
your inpur is that there is a piece of yours at the
point from which you are trying to move, Thus
you can move pieces round both easily and
illegally should you want to.

59 REMRLEND-D
100 PRINTL
s GOSUBZ
GOSUBS 1 REMESCEN PAWN A0VANCE™
FORET=—1TO!L
IFRii=FT,
IFF3=CTHENL T

P& NPT, ¥ ~A0: =0 THENU=0—~0sCE
KEXT

o hmbel

GOSUBLIL

 EOSUPAR"

COSUE 1487

2 FETURK

O REMRSEVSLLUATIGN

D FASACN, Y gA N, Fi=mi ] 50
: Do

" EDGT"-‘TCE

ISR ITr=A0 DR AR, 1Z1=807HEMOSO=AD/CH
FORJI=1 ‘!ne

LELS S B

=SC#CIEDS: 1w TOSE0
IFAL !r..‘lz =—LOIHENS=U—J I8 700 MEB=rEe]

s sl e S
{am8-Ds ACFamE:
ram: M=
© NEXT
I Al Ji =iV, Vi zhiE, VR
O RETURN
* FORFI=—210TSTEFS
IFIZ=FICI0RL2=F

RITAF T 10RI I=F2. B IHCNGAN

5 nERT
¢ FORI7e=-1TO1:FORIT=—1TO2
v IFRLII+17,4237 EM
Gl (1T eT7 I —IRADY BCD A0
O NEXTEMENT: R=0eIeal Oy

A% JFALIZ-CD,J2
o Q-Q-:ih’.\ 3re

(IZCTr+(J10 e b a0 DT  RETURN
THENTES
A STEF-A/0
OF =@F =& (F2en, 270
NEXT
FORQUI=1 TS
QOw@@+AiFI+E, 02
o NEXT
S NERT
£84 IFOP=GTHEND=U+CERMD
&0 IFYm) THEND=0+.5
&10 U=U«CPF ST/ CH+D0 CM:CF =0z L=
423 RETUSN
&30 FEMNSMIVE S10Nack
ed) mmin =t RRIN
&5C ABIN: -IzRCN
e CiNvs0
&TO BETLEN

ALUATE CEPTLFES
&5 V=Dl > SOSDFLGE=1 THENT 0
T10 REMMATHD LEvEL

FDSiS=-1TD1: FEﬁJ‘J= 1T

1€ I Smdanil s
IFRias NI =I5
NEATENENT
IFNE= I TRENNE=C: SOTO™32

I v NGel
RE TURN

O IFAGaGIN
0 IF&S i +1=2

O IFAtAA LN =L, Bt -1 OTHESNU (vt =0 ih ) &0
KE TuRN
- Shbilibyo,t
b - - Y- T R
$7 1,871
.é.a.. 1,8,3.=1
0,0

3 DATAA, 8,3
1000 DATAY, 8,-3,4, 2, -
1010 DATA?, &,T.F. 4.1, o o By 0,0, 0y -,n_r.

=CoTHERD =0 {502 009 37 v s Co Mb=ite+ 1 s BDTOT &0

IFac12+wws, 37 WEOORAIZ, J2 P20 == 7 AG0THEND=0+A0R0E : GOTOIED

FOORA{TZ-C0, JI=pl) - AOTHENRD=O-S 040

Sr=CIN—ACTHENG (N =0 (M) =R (&S (N,

THEND (31 =0 tN) +307 RE TURN

PRINTSELECT F

INFLTAS: [Fase 2" T

REGDAC1? .51 Ts. miSif
MERT

NEXT

& RESTORE

¢ EDSUEZ80

s PRINT:PEINT S0 woUr
INCUTEE: IFRS="7 " THE
TEA87 37" THET 284

1820 IFRIL, 2
142y MEETsHEST

14&0 IFhe WOTHEN]San

1450 FRIMT:FriMdT:FRIMTTS
1487 15 FLARS) MRN=0THEN

1850 TFE (M) 3TOTHERTO=1 045 T1 = A iNs 3 TEmBE i) 1 1288 (15 1 14=BT (00 : ERTO1S10

1500 GOTDISTD
1910 T1$=CHRE (ASCISTRe(T

1520 FRINTIHOME JLZCTDI" : TABITY s TIN TAE (170 ; T4 TRR

1530 RETURN
1234 IFFL &5=1 THERRSTURN

B M5 2 2 SOSUEE50: NE=1

GOR.
> =nn\.Tr-r\nE1[')-:rJ1'
B AL, Do
NLXT

M ":REC33" ,"gRi4y; TO

INFLT"FROM

1842 1FE:

1850 IFAL P THEMERSUB2E80: OTOIBTH
18e0 IFALE. . "0 THENIBID

1874 FRINT

188, BUTOIAT:
1890 INFUT"TO

1970 IFECZ=BaNDR 1AL 510 =

.e .a,—x,.r B0, 0 5,0, 0,0,0

ALBUSLRDT ™0

s FRINT "8 TI'lE FDR THIS MOVE = "jMIDS{118,2, 203" HIKE

YOUR FMOVET =

THEMSL1$=S5:T1:E1=514) tATE=LE 1 1) s BomB (2 c BUTDL B

OUR BEST REFLY IS "jS84313" ,"sS4a;" TO ";58421;"

"3R8, B2S: BI=VAL 1 bBI%)
1900 AI=VAL (CHRS (SSCiAlRs =141
1950 AZ-Vi (CHRB (LS 4TS -162 )
1920 [FAsAL,BL) >-1THENPRINT "ERRDR -
~LTHENFRINTIPRINTIPRINTLICRI "YOU WON! " :FRINT:END

Suby1,7:.7,1,8, 8,1
4,2,=1,7.3.-1,8,3,-2
- om

k=l REM TIVSRIZBLES TN EVSLUATION
ONfi-g% OF EnD-
HENRN=IAT (RND{ ] ' 8ab+1: GOTOI1 7D
J.F.Whize.*
T 3= NERTNFIT

STHENLIZDN
1.Buiny

WSNT T B0 FIREN (v uhi >
KERINT: “RINT1COTNIGTS

a TQ ;™

Bi7) s "STALEMATE !"iFRiINTiEND

120a)a% TTOmCHES (RS0 1L TRS | LE ST 4]

Tis:TABI2Tr s T2

E1=har ) s RITI PO g RETI =T 63 s B 420 =0 {1 g BOTO1 720

g RRIIV  TEBITT IR

“JRIGNTSITI®.2Y)

cyRec11;

H WiON
Ri21=2 Y:-iuu fZ,BIr=a

8 P AG=0o My Toise 100
": RIS, BistEI=VAL(B1S)

P L L)

TRY ADAIN"IGOTCI8ZD

32 YOUR COMPUTER, DECEMBER 1981



Arm-DaRDS (1)
12 EQTOD010

> REMSIKING MOVE
ORI I=—1TUL:FORTI=—1TO2
AE=] THENT 00

DI F=DTHENL Suxs

0 GOSUEeB)
S IFFLAG=1TAENITO
(RIEERL Y ol

s JF25 CTHEND O8F =0 it oG
ce L: IFCO :@THENZ2ZD

< (CRECL Y : BOTOZZYD

—AZmOTHEMA LAY, BE—13=0

[Th STES) Bt

IFIIJITHEN

P EWEAS (L)
P We=EE (I
0 We=ABIT
WW=EC{IL)
Ti=1I+1sJ
W AFI14=dITHEN

=]

1
Z&1u

2 IFJJ-LL>=RR—11THENT 770

3 IFII smpRTHENZTAD

o 86=RF+1:B{SS,11=11:RiSE, 2 =RR

& FR=JJ: GOTO2AC
3 IFLLy=JJTHENZTFO

o LL=1t

IGSCISTRE(Rw 1)}

2660 REMISSCREEN DISPLAY OF FUSITION

259¢ FRINTICLED

Facl,

O PRINT: PRINT™S B
» PRINTIFSEINTz FRINT 5

0 RETURN

O MM=CCIT zE(ITI=80Id: s 0{1T)=ui

BRI =ARII0 AR
=BEJ]
=ABIII s pBIIS =N
Iy=RPC¢Jd : BCLI)

SE=58=1:B(5S, 1= L:B{SS,21=0)

THEMFRINT ¢ =3
IT-ERFR NI
S MEXT:FRINT & :FRINT:AEXT

= o

L e ]

O BETAS: IFAS=""ThENI00a

TREMD (O mD (s —E08 . B
THENGD (N2 = (N2 AR08 . 8

(321 =uud
330 =kl

L]

=16} 3SRIK])=CHRS (ABC GTRES(KII) ) +182

E F & H
¢ TD COnYIsE™

Drawing on examples from his
program written for the Sinclair
machines, Philip Joy shows
you how to go about creating a
chess game of your own.

THE 2X-80 18 not the best machine on which to
write long and complex programs because of
its Basic. There are hardware problems as well
as software ones — a poor keyboard for
—ntering code in quantity, and slow speed. The
.asic does not let you use rwo-dimensional
arrays — which at first might seem a problem
— because of an eight-by-eight board.
However, it proves not to be, znd in fact it
helped me to such an extent that I have kept a
64 array for my version for the ZX-81, even
though it has multi-dimensional arrays. By
having integer arithmetic only, the troubles
with many INTs were overcome. The main
hardship is the fact that it did not have a really
easy way to enter machine code. Read or Dara
would have helped or even a monitor would
have made the entry of machine code easier.
As the program neared completion, it was
structured around five main units: initialis-
ation, movement, points, plaver, and back-up.
Each one of these units has a specific use and
place in the program. The movement was the
most difficult to write and proved to have a
great deal of bugs. The points section is the
thinking part of the program and calculates the
best moves: it was the easiest part to write.
The player is the unit which keeps the user
informed and sorts his moves for the computer
to respond to. Back-up plays the greatest part
in keeping the program working smoothly. It

finds, for example, the level of play, sorts the
points and deals with the machine code.

The computer obeys the laws of the game in
a much more logical way than the average
plaver might. If a good situation arises, a
plaver might rush his next move and make
either an illegal move, or one which could lead
to his losing the game. If a computer obeys the
laws of chess, checking for such things as dis-
covered check, illegal castling, and gemeral
illegal piece moves, it does mean that this
element of rush is removed.

Most of the moves are straightforward or are
mixtures of two simple moves, e.g., the
queen’s move. The bishop and the rook move-

Figure 1. How the computer makes a move.

Isitcheckmate? ___ Y | print “checkmam" — end
Sat up peinis table

Find highest score. ¢

-~
o+

Mowe it

Y N
Is the resulting pesition legall+!s it the last piece’astalemate

Is the position bad — and it Is not the last p-'e:e?__J
Change the board and the variables for new pleca.
Dizplay board.

Find player's move.

chess

ments could be calculated by a person with
some -experience of computer programming.
With some thought, the L-shaped knight
movement and the queen’s could be solved.
However, the two pieces, the king and the
pawn which move only one square at a time,
are the pieces with many conditions attached
to them. These two pieces have many
characteristics which, although are not
directly connected with them, make the
movement hard to perfect.

The program is based around a 64-character
array which holds all the black and white
pieces and the blank spaces. The program uses
two vectors 1o search for its move. One is the
horizonral vector, or the number of squares
down, while the vertical or the number of
squares along is used as the other vector. To
look into the array, these two vectors are
brought together by the eguation

{x-108+y

to give the square about which we want to find
some information. Our points table is scanned
for a move, and this move is then tried. If the
move fails, it is given a value of 0 in the points
table to prevent its being tried again. When a
move is found, the array is updated, and the
board is printed for the player’s turn. In any
move, the important thing to remember is that
the moving of a piece can cause check, or
checkmate. Many human players could over-
look this part of the game.

(continued on next page)

YOUR COMPUTER, DECEMBER 1981 33



(continued from previous pagel

Afier each move, the computer will discover
whether its king is in check. If it is, the
position is restored and another move tried. If
the same directions for a piece were tried in
the same sequence every time, the bishop, for
example, would always move upwards and
left. The computer must, therefore, try
different directions in 2 different order each
time,

Difficult decisions

The initialisation stage is the section where

the most difficult decisions are made. For

example, you have to choose the form of
storage, the arrays and their sizes and the

_different variables. The representation of the

-pieces, and the style of play will all be affected
‘by the way you decide. It is also here where
vou can include features which are not needed
or could be combined to reduce space, and
time.

The movement of the pieces is the only part
of the program which has been heavily flow-
charted. It is logical and is a part humans do
not consider in great detail — hence the danger
of bugs. It took about a month to remove the
bugs in this section, mostly by trial and error.

We search for a possible move by working
across the board and using our memory to
decide whether a piece can move or not. The
computer discovers a move by trial and error.
We must also be careful to rake into account
that the program could be faced with a
situation for which it cannot find a move. In
this position, the compurer will have to decide
whether it is checkmate or stalemate.

The pawn was the easiest to tackle with its
one move forward or two if it was on its first
move. All you have to do is to subiract from
the horizonrtal vector and check whether the
piece can move to this square. If it is on row 7
or row 2 depending on colour, we can take two
from the herizontal vector. However, before
we move we can check whether a diagonal —
found by adding or subtracting one from both
the vectors, depending on which way you are
going — is occupied by an enemy piece. Ifit is,
we would take it if it does not pur the
computer’s king in check. The only problem
with the pawn arises when it is about to check
— it has two possible moves.

The bishop and the rook are roughly the
same. They created no problems and took very
little time to develop. For a rook, we add one
to the file or row depending on which
direction it is moving. The bishop is slightly
more difficult as it has to add or subtract one
from the file and row — again depending on
which way it was moving. When we have
found our new position, and before we make it
on the board, we check for a number of things.

Complicated pieces

First, we see whether it has reached the
other side, or whether it has reached a piece of
its own colour. In either case, we know thart
this is as far as it can go. If it reaches an
opponent’s piece, it can replace it with its own
colour and subtract one from the number of
pieces the opponent has on the board. We
must also check for a check or checkmate and
if there is one, we must either move it to
another square or not move that piece at all.

34 YOUR COMPUTER, DECEMBER 1981

The knight, although it may seem a compli-
cated piece, is very similar to the rook and
bishop. You add two to one direction and take
one from the other, or any other combination,
and you must remember that this piece only
moves once, unlike the rook. There are in fact
eight moves a knight can make and you must
check for the piece going off the board.

The king can move in any direction but only
one square at a time, 5o you can see how easy it
is to cater for it in the program. We must
remember, however, that it is the piece which
must net be attacked. We have to find out
whether it is in check both at the beginning,
and at the end.

The way this is dene is to search along every
diagonal, file and row until we meet an edge or
a piece of the same colour. If this happens,
move on to the next path because the king is
not being attacked in thar direction. A simple
For-Next loop will deal with that.

However, it we find an opponent’s piece we
must discover which piece it is since all pieces,
apart from the queen, are limited in their
directions of attack. If the piece is not an
attacker, we can consider knight moves away

Element Value Comments
number
1 0 piece either not present
or has been tried
. 540 a pawn on its starting
square
3 600 a queen being attacked
4 539 a pawn being attacked
5 450  a bishop in the middle,
not being attacked
6 460 a castle on its starting
square
7 440  a pawn
8 440  a pawn
9 443 @ pawn — a random
number is added to make
sure each game is
different
10 510 a knight in a poor
position
1 580 a knight being attacked
12 340  the king
13 0 a piece already tried
14 508 a bishop in a poor
position
15 570 a pawn on the square
before it is promoted
16 0 a piece already tried

Tabie 1. Points table with fist of pieces.

from the king to see if they contain a knight of
the oppesite colour. If we do not find check
then we can move on.

If we find check, we have the other problem
of discovering whether it is checkmate. The
three ways of eluding check are: moving the
king, taking the atracking piece, or blocking.
The first is the easiest — move the king to all
the possible positions and verify to see if the
king is in check. If he is not in check, the
situation has been solved.

The next option — taking the attacker —isa
far more difficult problem to solve. We must
use the same routine to see if any piece is
attacking. If it is, we can move it to take the
attacker and, as long as we do not cause
another check or double check, we have again
solved the situation.

Blocking a check with a piece is the most
difficulr aspect. We can first see if the attacker

is a knight, because if it is we cannot block. If
it is not, we must, using a For-Next loop, go
from every square between the king and the
attacker and see if any one of those squares is
atracked by one of its own pieces. If it is, we
can move the piece to block the attacker.

This again has two conditions, the first Is
that it is not a double attack, and the second
that it does not create a discovered check. If
vou still cannot find a way our, the computer
is in checkmate, and you should have it sav so.

The part which decides how well a computer
plays is its points table. Each program has its
own points’ table and a different way of filling
it. .

The points table is made up of 16 elements,
and each element is initially given 500 points,
The computer then goes through the board
until it finds one of its pieces; it then stops and
evaluates the position. It does this by looking
at which piece it is and subtracts points if it
does not want to move ir.

Skill of the game

For example, it is much safer to move a
bishop than a queen. The program conside
other aspects such as whether it is being
attacked. If it is, it will have to move the piece
concerned so some points will need adding.
Then it can lock at its position; if it is in the
centre, points will be deducted so that it is less
likely to move. Other considerations can be
evaluated, depending on how good a game you
wish to play, and how much space you have.
When this points table is built up, the
element with the most points will be tested to
see if it can be moved. If it cannot then a zero
will be placed in it so that it will not be tested
again.

The element with the most points moves
first. The skill and standard of the game
depends so much on this part of the game that
to make it play better, a great deal of work on
this section is needed. The results we obtain
from a points table need not be accurate
enough for playing against some players, but it
can he a match for average players if it is dealt
with correctly. "

The player section is the part which w
interact with the plaver so that he can enter his
moves and can see the board. My program dis-
plays a full board with the pieces represented
as letters:

King-K, Queen-Q, Rook-C, Bishop-B, Knight-N,
and Pawn-P.

This is sausfactory for a ZX-80 but if your
computer has graphics, or else a user-definable
character set, then use the letters. The normal
way for entering chess programs into a
computer such as a Chess Challenger is by
algebraic methods. That is used here — it is
also the chess standard.

The final section of the game is the back-up
which is just a collection of routines which
will deal with such things as:

M Set up points table

W Zeroing of moves already tried

M Loading and using machine code if any is
present.

HEReprinting board.

B Putting pieces on the board.

M Different board set-ups — black or white.

M Other tasks which can be used by all of the
routines already mentioned.



