CHESS

John White discusses the main
developments in computerising
the game of chess, and
suggests how to employ these
techniques when you set about
writing your first chess
program.

SPEAKING IN 1949, the mathematician

=~annon pointed out that an average chess
_ -ne lasted 40 moves and that there are an
average 30 move possibilities during each of
those moves. There are, therefore, ar least
10120 possible games of chess. To search these
at the ridiculously high rate of 1,000,000
games per second would require a search time
of 10108 years to exhaust all possibilities.

When constructing a program to play chess,
it is certainly not possible to carry out an
exhaustive search. Instead, a search of a few
moves Is considered and the position which
arises is scored. The means of deing this is
known as the evaluation function — EF — and
the strength of a chess program depends very
much on how effective the EF is.

Contary to popular belief, it is actually
relatively easy to write a chess program. The
real difficulty lies in constructing a program
which meets the following requirements:

W Piays strong chess.
M Makes its move within a reasonable time —
certainly not more than five minutes.
~™Lses |ittle memory — less than 32K at the out-
- de
“Skilled chess programmers earn high fees,
with good reason. It is generally true that good
programs are written by highly-experienced
machine-code programmers, rather than by
good chess players. The mainframe world
computer chess champion, Belle, was written
by a non-chess player, and relies on brute
strength to find its move rather than by
making complicated positional assessments.
However, some appreciation of good chess
play is necessary to write a good program for a
MICTo.

Before cmbarking on writing a chess
program, you should clearly define what vou
expect from it. The amateur, working in his
spare time, is unlikely to be able to produce a
program capable of beating onc written by a
team of full-time, salaried professionals. Nor
will the amateur have access to dedicated chess
units for his program, and will have o rely on
his domestic microcomputer which cannot be
expected to run so fast as the dedicated unit
would.

On the other hand, writing chess programs
will give much pleasure and will also improve
vour programming skill. With practice, vou

24 YOUR COMPUTER, MAY 1382

will soon find thar writing programs becomes
much easier; you will not, for example, need to
keep rewriting vour move generaror.

There are also many discoveries waiting to
be made in improving evaluation and search
procedures. Computer chess is essentially only
30 years old, and the alpha-beta pruning
method only half that. The obvious “chopper™
pruning mechanism entered commercial chess
computers as lare as 1981,

As a final inducement, I should mention that
many of the chess games available on cassette
for domestic micros play a feeble game which
could easilyv be improved — think of the
market for the Vic and the BBC Micro.

Searching for checks

Many modern chess computers search to a
depth of four-ply at their higher levels, search-
ing deeper for checks and captures. A ply of
search is equivalent to one half move, that is,
one move by either side. This dictates the
choice of programming language. If a machine
can choose its best move at one-ply in one
second, then it will take 30 seconds to examine
its oppenent’s reply to each of its moves, 900
seconds to examine its own responses to each
of the possible opponent moves, and 27,000
seconds — 7.5 hours — 1o examine the
opponent counter responses at the fourth ply.
If the program takes 10 seconds to find its best
one-ply move, than it will take 312 days to
search to a depth of four-ply.

These figures assume a full search of the tree
of moves which is constructed by considering
all possible permurarions of moves to a depth
of four-ply. In fact, powerful pruning methods
exist to reduce the size of the tree, and a
program which can select its best one-ply
move in one second can be made to search to a
depth of four-ply in zbour two to three
minutes.

To reduce the time spent selecting a move at
one ply to 10 seconds or less, machine code or
assembly is essential. Qur of curiosity, I wrote
two chess programs, one in interpreted Basic
and one in compiled Fortran, to see how long
they would take to run with a one-ply search.
The Basic version took threz minutes per
move, the Fortran version five seconds, and
both played ghastly chess due to 2 minimal
EF. A good machine-code program should
find its one-ply move within one second.

Another good reason for programming in
machine code is the inability of many other
languages, including Basic, to perform
recursion. I do not know any way of enabling a
Basic program to call itself more than once,
since the Return statement bears no label. It is
desirable to use, say, a move generator at each
level of search, rather than to have to write a

FCINEEN S THER

fresh generator for each and every level

Finally, machine-code programs are more
economical on space than other languages, and
it is possible to write a reasonable program
using less than 4K of RAM.

A variety of methods may be used to set up
the chessboard. Simplest i1s 2 two-dimensional
array, where different positive values are
assigned 1o the machine pieces, and negative
values to the opponent’s. The values may be
equated with the nominal vzlue of a piece, so a
queen could be assigned a wvalue of 90, a
bishop 32 and a knight 29. Loss of the king is
fatal, so these are assigned very high values,
say, about 5,000.

All moves to z position will then be subject
to the constraint that X * (9—X) and Y * (9-Y)
— where X and Y are the new co-ordinates on
the board — must both be greater than zero.

It is common practice to put the Oth and
ninth lines of the array to a number which is
distinguishable from the pieces. This marks




THE BEST MOVES

the rim of the board and saves checking
whether a project move has gone off the board.

Picture a rook moving down a file. It can
cither feel its way down cautiously or it can
thunder down until it bounces off the rim. A
second rim can also be added to check the
legality of knight moves, which may hop over
the first rim. Remember that the rim may have
to change sign, in some implementations,
according to which side is moving.

_Separate table

It is also possible to devise chessboards in a
one-dimensional array and even 1o use two
two-dimensional arrays, so that all the pieces
will appear to be moving in -the same
direction.

The position of major pieces can addition-
ally be kept in a separate piece table, and this
enables attacks on enemy pieces to be found
very quickly. This method is used by all the
major chess manufacturers.

The move generator simply calculares all the
moves for the chess men. A queen is composed
of a rook and a bishop. The generator can be
written very easily, but remember to test for
move legality. A piece can move on to a vacant
square, on 10 an enemy-occupied sguare but
not on to a friendly-occupied square. A piece
cannot move through another picce, unless it
1s 2 knight.

En passan: is also reasonably easy to carer
for. A flag is set whenever a pawn makes 2
move ¢nabling e passanr by the opponent.
Much more difficult is cestling where the
castling rook must not have been moved, the
king must not have been moved, the king must
not be in check and the king must not pass
through check or settle in check.

A test to see if the king is in check is, there-
fore, essential and this can also be used to give
priority to king protection. The test is done by
making legal rook, bishop, pawn and knight
moves away from the king, and testing to see

whether the szppropriate enemy picce is
encountered. Testing to sec if the moving
piece is giving check is inadequate, since it
may miss a discovered check. Incidentally, do
not forget 1o allow for the possibility of double
check.

Evaluation function

Two methods are available for working out
which move a computer should make. The
first is the EF, which assesses and scores a
position arising after 2 piece has been moved.
The second is the look ahead — search in
depth — which considers responses to
machine moves, counter responses, counter-
counter responses and so on.

There is considerable debate in computing
circles as to whether a chess program should
use a sophisticated EF combined with a
shallow search — bur searching some forcing
lines such as captures in greater depth — or

fcontinued on next page)

YOUR COMPUTER, MAY 1982 25



o

{continued from previous pagel

should use a minimal EF with as deep a search
as possible. Bearing in mind thar the EF is
called after every potential move, it must be
kept as short — that is, as fast — as possible,
particularly for a deep scarch, and will rarely
contain more than 20 elements.

Devotees of the first methed point out that a
detailed search of only part of the tree, selected
by a sophisticated EF, most closely mimics
human chess play. David Levy is a believer in
this approach, and his company’s Philidor
program uses special, still secret methods to
attain a strong EF capable of considering even
strategic factors. Another example is the
German Shach computer which plays a
respectable game with a look ahead of oniy one
move, but with a very powerful EF.

Adherents of the second approach observe
that programmers should concentrate on the
computer’s greatest strength — 1its ability to
calculare rapidly. The Belle program makes its
moves by caleulation deep into the chess tree.
It is also common to give great consideration
to the EF at the first and second ply, bur 10
reduce the EF at all subsequent levels, so as to
spend less time searching.

Search routines

By convention, the score from an EF is
taken as positive if favourable for the program,
negative if unfavourable. An essential feature
of any good EF is an evaluation of the number
and quality of pieces bearing on any square,
particularly in the centre. This is done as
described for the search for check on the king,
and the same routine can be used for both pur-
poses. However, it is important to remember
that for square control one piece hidden
behind another may still exert an effect,

For example, a queen on the same diagonal
as a bishop — with no intervening piece — will
exert its own pressure on the same squares as
the bishop. The bishop will exert the greater
pressure, since it is more expendable than the
queen.

Other features worth including in the EF are
material count, atracks on king, queen or lesser
pieces, pins, presence of doubled pawns,
development of pieces, whether castling has
occurred and advancement of pawns. Yet
other features can be added, limited only by
available time or imagination. Some examples
I have seen include fianchettoing the bishop
and doubling rooks along a file or row,

So far we have been considering only the
evaluation of positions. An alternative method
is to evaluate each move as it is made. This is

significantly faster than evaluating positions,

but unfortunately gives weaker results. It is
not suited to chess programs, but could be
used for draughts or other games where tactics
are more important than strategy.

The ability to search moves in depth is a
subject which would require as much space as
all the rest of this article put together. Basic
principles, with excellent examples, can be
found in the references given at the end of this
article,

Numerous techniques are available to
reduce the size of the tree to be searched, and
vou should acquaint yourself with the follow-
ing:

M Minimax is the name given to a full search of
every permutation of moves, i.e., the whole

26 YOUR COMPUTER, MAY 1382

tree, where the opponent tries to minimise the

machine's score while the program tries to

maximise it. This is the slowest type of search.

BW Alpha-beta search iz a method of pruning
which gives the same result as minimax but in
less time. The principle is that if any one
response to a program move czn be found that
makes the move weaker than one previously
considered, then the program need not waste
time calculating other responses to that move.

M Hard pruning can be effected simply by
eliminating all potential mowes which fail to
achieve a certain minimum score.

B Razoring makes use of the assumption that
the opponent can always find a move that will
make things better for him than if he had made
no move. :

M Chopper: sometimes the program has only
one legal move. This can be made at once
without need to calculate all the possible
responses and counter responses.

B Kiiler heuristic makes use of the assumption
that any response which cuts off part of the
tree with alpha-beta pruning will also cut off
another part at the same level.

The efficiency of many of these pruning
methods, especially alpha-beta, can be greatly
increased by sorting the moves into decreasing
score order. This must not be done too often,
or the time spent sorting exceeds the time
saved, but can be very effective if carried out
after each ply of search.

This leads us to iterative deepening which is
used on virtually all the better chess machines
now. All the moves are found at the first level.
These are sorted into score order and searched
to the second ply. These are sorted and
searched to third ply and so on. By this means,
the best move yet found is always available at
each level of search, and this is normally
constantly displayed. If a timer is employed,
the thinking can be interrupted at any time
and the best move becomes the machine’s
choice.

Mobility is an important concept in chess,
and is most simply obtained by summing the
number of legal moves made by the program
and by the calculated responses to each of its
moves. Pruning must not be carried out at the
first and second ply or this method will not
work.

Normal pruning

Mobility may also be assessed in a suffi-
ciently sophisticated EF — for example, by
modification of the square conirol routines —
but slows the program noticeably. However,
normal pruning is now permitted, which may
compensate.

When the total material count of pieces falls
below 2 minimum level, then extra end-game
routines can be called. The EF should be
adapted to make the king more active and to
make the advance of pawns — especially as
chains — more favourable. The depth of
search can also be safety increased since less
material is available to be moved.

As sz guide, the powerful Morphy program
enters its end-game routines when material
equivalent to two kings, two rooks, two
knights and seven pawns remains on the
board, and the depth of search is roughly
doubled at the higher levels.

Book openings are very useful for games of
chess, enabling the program to avoid opening
traps and permitting some non-obvious
strategic moves to be made. For example, the

black move C7-C5 is thematic in many
queen’s pawn openings, vet I know of no
program which does this early in the game
except as part of a book opening.

The only limit on the book is that of
memory space, which is unlikely to trouble
most owners of micros. The book should be
held in an array, matched against move
number, and not as part of an opening tree
which will take a long time to search.

Random selection between moves of nearly
equal merit is a very useful feature, making all
games different, and is most simply done by
adding a small random number in the EF to
the score from each evaluation.

Counter moves

After completing its search, the program
will come up with a series of moves and a
series of counter moves. These can be stored,
which is very expensive on memory but will
enable the program — on request — fo reject
the best mowve in favour of the next best and so
on. This facility is available on several of the
programs from the software company Philidor—,
such as Pet Chess, Intelligent Chess and Che.
Champion Mk V.

More commonly, the scores are compared
with a store which is initially set at minus
infinity, say, —10,000. If the score exceeds the
store, the store level is set to the score and the
moves creating the score are also stored. Thus
the store is constantly upgraded until only the
best move remains in the move storage area.
For opponent responses, a second store is pre-
set to plus infinity — say, +10,000 — and
scores that are less than the store are
exchanged with the score untl the lowest-
scoring, and so best, opponent response is
stored. The same two stores can also be used

to operate the alpha-beta pruning mechanism.

Iterative deepening

Other useful features which can be added to
a chess program include the ability to set up a
position, use of real-time clocks to record play
length and a move counter. For programs
using iterative deepening, the clocks canC.
used to interrupt the machine’s thinking, ats-
a halt button can also be made available for the
user for the same purpose.

A prompt button can be used to reveal what
the machine thinks should be your move, and
a restore button can be used to take back
moves — this will require memory storage of
past moves. Printers can be interfaced for a

“ permanent record, which may be had at the

conclusion of the game on request, or as the
game is plaved; the latter requires no memory
storage.

Finally, do not forget to couple your move
generator with a routine which tests 1o see
whether the opponent’s proposed input is
legal.

REFERENCES

BThe following are essential reading for
anyone writing a chess program:

B Sargon — a computer chess program, D
and K Spracklen, Hayden.

M Advances in Computer Chess pages 89 to
97, J A Birmingham and P Kent, Pergamon
Press.

M Chess and Computers, D Levy, Batsford.




